Fuse 5G, Utrecht January 19th, 2024

MobileAtlas: Distributed Measurement and Security Testing

Speaker: Adrian Dabrowski

Co-Authors: Gabriel Gegenhuber, Wilfried Mayer, Edgar Weippl

v1.31 / fuse5G v1.0

Three City States

From Landline ...

... to Wireless!

Three Major MNOs

KnighT Mobile

BardBoard

Combos with "Free" Traffic

- Popular with certain demographics
- Monthly data allowance
 - PLUS FREE:
 - Video Streaming
 - Audio Streaming
 - Social Networks

...

Real (Addictive) Transformation

This is Archibald

- Has found a traffic accounting vuln.
- Likes to visit his friends "abroad"
- Repeatedly experiences roaming oddities

Cellular (Security) Research

- "Prisoner" of geography
- Frequencies and MNOs geographically bound
- Limited number of MNOs per territory
- Many stationary cell towers

Distributed Measurements

- IMSI Catcher Catcher (2014)
- SeaGlass (2017)
- Monroe (2015-2018)

IMSI Catch me if you can

- Adrian Dabrowski, Nicola Pianta, Thomas Klepp, Martin Mulazzani, Edgar Weippl
 - TU Wien, SBA Research
- Continuity ++

SeaGlass (2017)

- Peter Ney, Ian Smith, Gabriel Cadamuro, and Tadayoshi Kohno
 - University of Washington
- Mobile, In Cars
- Coverage ++

Monroe

- Horizon 2020 Project
 - Simula (Norway), Imdea Networks (Spain), Karlstad University (Sweden), Politecnico Di Torino (Italy), Nextworks (Italy), Celerway Communications (Norway), Telenor (Norway)
- First Roaming Measurements

interesting Why Roaming is Complex?

- Visiting and Home network need to work together
- Some traffic passes both, other just the visiting MNO
 - Data typically uses home routing (except Travel SIMs and Google Fi)
 - Voice typically uses local breakout for latency, but with a custom CallerID

And Then, There is VoLTE's (Non-)Roaming...

Welcome, you are roaming on AT&T. Due to network technology compatibility, traditional voice calls will not work. Please use data, SMS, and app-based calling.

1 min

Archibald likes to travel

One SIM has 6 Roaming + 1 Home Network

How to Scale, Automate?

- Buy a lot of SIMs and a lot of modems
 - Hardware costs
 - Monthly costs
 - Thus, bankruptcy!

How to Scale, Automate?

- One modem at each territory, and ship SIMs around
 - Low hardware overhead
 - Long shipping times
 - Manual labor

Decouple SIM and Phone/Modem

40

MobileAtlas

Geographically Decoupled Cellular Measurements & Exploitation

Our Goals

- Scalability
- Automatability
- Control background noise

- Low-cost, open design
- SIM communication
- Full feature spectrum

Combating the Combinatorial Explosion

Combating the Combinatorial Explosion

MobileAtlas Platform Architecture

Hardware: SIM Provider

- SIM Provider software executed on system (e.g., laptop)
- SIM card attached to system
 - PC/SC Reader
 - "Cheap" SIM Reader
 - Modem (AT+CSIM)
 - Android Phone (via Bluetooth rSAP)

Challenges (Selection)

- SIM protocol
- Traffic Metering
 - Background traffic
 - Delay

SIM Interface

- SIM protocol
 - In-device, low latency
 - But network has latency
 - Synchronous I/O
 - 1-5 Mhz clock speed
 - Multiple voltages
 - APDU relay request/response

SIM Interface

- We can negotiate speed & electric parameters independently (SIM Provider, Modem)
 - 1.8V, 3V, 5V
 - ATR and PPS
- Waiting Time eXtensions (WTX)
 - We tested 1000 ms latency
- Future work: cache/emulate some files locally.

Traffic Metering

- Control our background traffic
- CDR often not realtime
 - ~x Hours, domestic
 - ~x Days, roaming
- No Standard
 - Web, SMS, App, USSD
- Granularity

Eliminate Background Traffic

- Only one container is connected to the modem's data connection
- Linux network namesapces (similar to Docker)

Delayed Traffic Accounting

- Charge Data Records (CDR) are often delayed by hours
- Use **binary encoding** for size of testing data: size = 2^{testnr} MB
- Hours later, we can unambiguously distinguish which traffic was accounted and which was free.

What about eSIMs ?

- Not universally available
- Not universally transferable
- We include them in MobileAtlas via BT rSAP Prototcol
 - Android Phone connects to SIM Provider system (e.g., Laptop) and shares its SIM card
 - No root required

Things We Have Learned...

- IMSI is not a good primary key for a SIM card
 - SIMs change IMSI to select roaming partner network
 - Travel SIMs (also Google FI) are cloud-controlled SIMs
- Hard to reach USB's 127 device limit
 - Lousy hardware, weak drivers, power consumption

Adventures in USB Land

Where Do We Stand Today?

Ethical Considerations

- Radio regulation
 - Modems unaltered
 - Globally certified
 - No SDR
- No enrichment
 - We let expire same or bigger amount of unaccounted traffic from our data allowance.

- Network influence
 - No DoS, no abnormal traffic amounts
- Local LAN
 - All traffic via VPN
- SIM registration
- Guest LAN access

Measurement & Exploits (Selection)

Showcase A: Zero Rating and Free Riding

Zero-Rating

+ Smart Net

Zero-Rating: Carrier Perspective

- Data traffic needs to be separated
 - Billed traffic
 - Zero-rated traffic
- Classification of traffic that belongs to zero-rated applications
 - Based on various metrics

Traffic Classification: Popular Metrics

- TCP/UDP Port
 - Vague
- IP Address
 - Accurate, if static
 - Dynamic in cloud hosting
- DPI
 - Protocol dependent

- TTL
 - Used to detect tethering
- Machine Learning
 - Detect various
 patterns/metrics within
 packet flow

Hostname-based Classification

HTTP (plaintext)

- Classified via Host Field

<u>GET / HTTP/1.1</u>

Host: mobileatlas.eu

User-Agent: Mozilla/5.0 = Accept-Language: en-US Accept-Encoding: gzip, deflate Connection: keep-alive

HTTPS, HTTP3 (TLS)

- Classified via SNI Field

```
 Handshake Protocol: Client Hello

 Handshake Type: Client Hello (1)
 Length: 508
 Version: TLS 1.2 (0x0303)
 Dandom: 18d7o5o5813o765d957o640aa567800b86f

 Extension: server_name (len=19)

   Type: server_name (0)
   Length: 19

 Server Name Indication extension

      Server Name list length: 17
      Server Name Type: host_name (0)
      Server Name length: 14
     Server Name: www.google.com
```

Zero-Rating Study

- Measured 7 operators (of 3 European countries)
- WhatsApp, Snapchat, Facebook/Messenger
 - Communication via WebAPI
 - HTTP, HTTPS, HTTP3
 - IPv4, IPv6
- Measured all operators and applications in 8 countries
 - In September 2021 + May 2022

Zero-Rating Study: Results

USED CLASSIFICATION METRICS AT THE TESTED OPERATORS AND APPLICATIONS

Operator	Roaming	WhatsApp	Snapchat	Messenger/Facebook
AT-1	Yes	IP	IP, Host	\$
AT-2	Yes	IP	IP^{a}	IP
AT-3	Yes	IP	×	\$
HR-1	No	IP	Host	IP
HR-2	Yes	IP	IP, Host ^b	IP
RO-1	No	IP, Host ^b	×	IP, Host ^b
RO-2	×	$\mathbf{IP^{c}}$	×	×

\$ traffic fully billed. × not part of zero-rating tariff. ^a IPv4 only. ^b HTTPS only. ^c TCP only.

Zero-Rating Study: Results

USED CLASSIFICATION METRICS AT THE TESTED OPERATORS AND APPLICATIONS

JPv6 billed :-(

Operator	Roaming	WhatsApp	Snapchat	Messenger/Facebook
AT-1	Yes	IP	IP, Host	\$
AT-2	Yes	IP	IP^{a}	IP
AT-3	Yes	IP	×	\$
HR-1	No	IP	Host	IP
HR-2	Yes	IP	IP, Host ^b	IP
RO-1	No	IP, Host ^b	×	IP, Host ^b
RO-2	×	$\mathbf{IP^{c}}$	×	×

\$ traffic fully billed. × not part of zero-rating tariff.
 ^a IPv4 only. ^b HTTPS only. ^c TCP only.

Zero-Rating Study: Results

USED CLASSIFICATION METRICS AT THE TESTED OPERATORS AND APPLICATIONS HTTP3 (QUIC) billed :-(

Operator	Roaming	WhatsApp	Snapchat	Messenger/Facebook
AT-1	Yes	IP	IP, Host	\$
AT-2	Yes	IP	IPa	IP
AT-3	Yes	IP		\$
HR-1	No	IP	Host	IP
HR-2	Yes	IP	IP, Host ^b	IP
RO-1	No	IP, Host ^b	×	IP, Host ^b
RO-2	×	IP^{c}	×	×

\$ traffic fully billed. × not part of zero-rating tariff. ^a IPv4 only. ^b HTTPS only. ^c TCP only.

Phreaking Revised: Spoof Hostname

- Hostname-based classification
 - HTTP (HTTPS?)
 - Write custom relaying script
 - Sometimes only simple regex within first bytes of packet
 - HTTPS/HTTP3
 - Use TLS-based VPN (e.g., OpenVPN) and spoof SNI Header
 - Similar to domain-fronting

Measurement & Exploits (Selection) Showcase B: Location Tracking with Ringback Tone Fingerprinting

Ringback Tone Fingerprinting

- Ringback tone is issued by the call-terminating operator ("early media")
 - i.e., the roaming partner
- Different ringback tones in different regions
 - US: 440 + 480 Hz
 - Europe: ~425 Hz

Ringbacktone I: Vodaphone RO

430 Hz

Ringbacktone II: Telekom DE

426 Hz

Ringbacktone III: O2 DE

426 Hz

Amplitude vs. Frequency

Ringback Tone: a Privacy Leak

- Can differentiate only by Amplitude + Frequency
 - One call, and you know the current (roaming) country/operator of the target
 - Other metrics: overtones, duty cycle
 - Other call progress tones
- Potential abuse for SIM swapping attacks
 - to find responsible (home) operator

Measurement & Exploits (Selection)

Showcase D: Billing without Service

No Service – Double Billing

Welcome, you are roaming on AT&T. Due to network technology compatibility, traditional voice calls will not work. Please use data, SMS, and app-based calling.

1 min

- Roaming in the USA
- Call from Europe
 - €: passive roaming
- AT&T does not support VoLTE roaming
- Redirected to voice box
 - $\in \in \in$: active roaming

Conclusion

Conclusion

- Cellular research feels like being a geographic prisoner
- SIM tunneling enables new research opportunities
 - Rapid testing of many MNOs
 - Roaming
 - Early detect of problems
 - Long term measurements
- Showcases
 - Zero-Rating, Call Progress Tones, Proactive SIM, Billing inconsistencies

Measure & Exploit MNOs Globally

- Archibald can now measure, test, and develop exploits globally
- Escaping the geographic prison
- SIM tunneling enables new research opportunities
 - Rapid testing of many MNOs
 - Roaming, compliance, routing fraud, ...
 - Quality control (early detect of problems, Long term measurements, net neutrality)
- Showcases
 - Zero-Rating, Call Progress Tones, Billing inconsistencies

adrian.dabrowski -at- cispa.de

F10. 6.